| 1. | By duality approach , we characterize the optimal control law 并用对偶方法刻画了最优控制律的特征 |
| 2. | Optimal control law 最优控制律 |
| 3. | A finite iterative result of the two - point boundary value problem sequence is taken as a sub - optimal control law of the original system 从而将两点边值问题族解序列的有限次迭代结果作为系统的次优控制律。 |
| 4. | An approximate optimal disturbances rejection control law is obtained by intercepting a finite iterative result of optimal control law sequence 通过截取最优控制序列的有限次逼近值,可以得到非线性互联大系统近似最优扰动抑制控制律。 |
| 5. | Simulation examples demonstrate that the control law is efficient and more robust than the classic state feedback optimal control law with respect to errors produced by the external disturbances 仿真算例表明,该算法有效并容易实现,且对外部确定扰动的鲁棒性优于反馈最优控制。 |
| 6. | Using the optimal control theory an optimal control law of agile turn is proposed enabling to eliminate velocity component in vertical director of initial sight under thrust vector control 应用最优控制理论,提出一种最佳快速转弯控制律,能在推力矢量控制下消除终端时刻垂直于初始视线方向上的速度分量。 |
| 7. | By using successive approximation approach , the feedforward and feedback optimal control law is presented , and a disturbance observer is designed to make the optimal controller physically realizable 采用逐次逼近算法给出了系统前馈反馈最优控制律的设计方法,利用扰动观测器解决了最优控制律的物理可实现问题。 |
| 8. | By solving iterative the sequences , the optimal control law is obtained which consists of analytical linear feed - forward - feedback terms and a nonlinear compensation term , which is the limit of the adjoint vector sequence 通过迭代序列得到的最优抚动抑制控制律由解析的线性前馈反馈项和序列极限形式的非线性补偿项组成。 |
| 9. | The order - reduced results are verified by comparing the zeros , poles and outputs curves before and after the order reduction and applying the linear quadratic optimal control law for low - order model to the high - order model 通过零极点比较、输出曲线比较和将针对低阶模型设计的线性二次型最优控制律加入原高阶模型等方法对降阶结果进行了验证。 |
| 10. | Abstract : the paper emphasizes on exoatmospheric antimissile missile rapid reaiming problem , and according to pontryagin ' s maximum principle the optimal control law in the conditions of long miss distance and long elimination time is presented 文摘:针对大气层外反导导弹快速重新瞄准问题,在脱靶量和消除它的时间都比较大的情况下,用庞特里亚金极大值原理求出了最优控制规律。 |